LLMs
Deploying a Generative AI model requires more than a VM with a GPU. It normally includes:
- Container Service : Most often Kubernetes to run LLM Serving solutions like Hugging Face Text Generation Inference or vLLM.
- Compute Resources : GPUs for running models, CPUs for management services
- Networking and DNS : Routing traffic to the appropriate servic
Understanding the Cost of Generative AI Models in Production
pair-preference-model-LLaMA3-8B by RLHFlow: Really strong reward model, trained to take in two inputs at once, which is the top open reward model on RewardBench (beating one of Cohere’s).
DeepSeek-V2 by deepseek-ai (21B active, 236B total param.): Another strong MoE base model from the DeepSeek team. Some people are questioning the very high MMLU sc... See more
DeepSeek-V2 by deepseek-ai (21B active, 236B total param.): Another strong MoE base model from the DeepSeek team. Some people are questioning the very high MMLU sc... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Overview
MaxText is a high performance , highly scalable , open-source LLM written in pure Python/Jax and targeting Google Cloud TPUs and GPUs for training and inference . MaxText achieves high MFUs and scales from single host to very large clusters while staying simple and "optimization-free" thanks to the power of Jax and the XLA compiler.
MaxText... See more
MaxText is a high performance , highly scalable , open-source LLM written in pure Python/Jax and targeting Google Cloud TPUs and GPUs for training and inference . MaxText achieves high MFUs and scales from single host to very large clusters while staying simple and "optimization-free" thanks to the power of Jax and the XLA compiler.
MaxText... See more
google • GitHub - google/maxtext: A simple, performant and scalable Jax LLM!
core components of Deep RL that enabled success like AlphaGo: self-play and look-ahead planning.
Self-play is the idea that an agent can improve its gameplay by playing against slightly different versions of itself because it’ll progressively encounter more challenging situations. In the space of LLMs, it is almost certain that the largest portion o... See more
Self-play is the idea that an agent can improve its gameplay by playing against slightly different versions of itself because it’ll progressively encounter more challenging situations. In the space of LLMs, it is almost certain that the largest portion o... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
These two components might be some of the most important ideas to improve all of AI.
The need for better AI or LLM-specific infrastructure, along with the host of problems that come with non-deterministic of LLMs, means that there’s more software work ahead of us, not less. Abstraction layers like LLMs create more possibilities and thus, more work.
Is this a good thing or a bad thing? I’m not sure.
A great example of this is frontend... See more
Is this a good thing or a bad thing? I’m not sure.
A great example of this is frontend... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Today, we’re releasing the Assistants API, our first step towards helping developers build agent-like experiences within their own applications. An assistant is a purpose-built AI that has specific instructions, leverages extra knowledge, and can call models and tools to perform tasks. The new Assistants API provides new capabilities such as Code I... See more
New models and developer products announced at DevDay
- Right now, GPTs are the easiest way of sharing structured prompts, which are programs, written in plain English (or another language), that can get the AI to do useful things. I discussed creating structured prompts last week, and all the same techniques apply, but the GPT system makes structured prompts more powerful and much easier to create, tes
Ethan Mollick • Almost an Agent: What GPTs can do
we’re in a capability overhang - the AI tech that already exists has huge potential impact, whether you engage or not, so get ahead by exploring
the appropriate approach is pathfinding which uses experiments to learn and, critically, artefacts to tell the organisation what to do next.
the appropriate approach is pathfinding which uses experiments to learn and, critically, artefacts to tell the organisation what to do next.