GitHub - turboderp/exllamav2: A fast inference library for running LLMs locally on modern consumer-class GPUs
Ollama
ollama.com
slowllama
Fine-tune Llama2 and CodeLLama models, including 70B/35B on Apple M1/M2 devices (for example, Macbook Air or Mac Mini) or consumer nVidia GPUs.
slowllama is not using any quantization. Instead, it offloads parts of model to SSD or main memory on both forward/backward passes. In contrast with training large models from scratch (unattainable... See more
Fine-tune Llama2 and CodeLLama models, including 70B/35B on Apple M1/M2 devices (for example, Macbook Air or Mac Mini) or consumer nVidia GPUs.
slowllama is not using any quantization. Instead, it offloads parts of model to SSD or main memory on both forward/backward passes. In contrast with training large models from scratch (unattainable... See more
okuvshynov • GitHub - okuvshynov/slowllama: Finetune llama2-70b and codellama on MacBook Air without quantization
Deep learning at the speed of light.
Luminal is a deep learning library that uses composable compilers to achieve high performance.
use luminal::prelude::*;
// Setup graph and tensors
let mut cx = Graph::new();
let a = cx.tensor().set([[1.0], [2.0], [3.0]]);
let b = cx.tensor().set([[1.0, 2.0, 3.0, 4.0]]);
// Do math...
let mut c = a.matmul(b).retrieve();
... See more
Luminal is a deep learning library that uses composable compilers to achieve high performance.
use luminal::prelude::*;
// Setup graph and tensors
let mut cx = Graph::new();
let a = cx.tensor().set([[1.0], [2.0], [3.0]]);
let b = cx.tensor().set([[1.0, 2.0, 3.0, 4.0]]);
// Do math...
let mut c = a.matmul(b).retrieve();
... See more
jafioti • GitHub - jafioti/luminal: Deep learning at the speed of light.
2-5x faster 50% less memory local LLM finetuning
- Manual autograd engine - hand derived backprop steps.
- 2x to 5x faster than QLoRA. 50% less memory usage.
- All kernels written in OpenAI's Triton language.
- 0% loss in accuracy - no approximation methods - all exact.
- No change of hardware necessary. Supports NVIDIA GPUs since 2018+. Minimum CUDA Compute Cap